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Supplement to Section 3.6

Diagonalization and Quadratic Forms

De La Fuente notes that, if an n × n matrix has n distinct eigenvalues,
it can be diagonalized. In this supplement, we will provide an additional,
very important diagonalization result. Symmetric matrices can always be
diagonalized; moreover, the change of basis matrices that carry out the di-
agonalization have a special form. This has an important application to
quadratic forms, which in turn have application to the geometry of level sets
of preferences, and to the analysis of variance-covariance matrices.

1 Diagonalization and Change of Basis

Before proceeding with the diagonalization result for symmetric matrices, it is
useful to discuss the relationship between diagonalization and change of basis.
De La Fuente (page 151) defines a square matrix M to be diagonalizable if
there exists an invertible matrix P such that P−1MP is diagonal; he also
(page 146) defines two square matrices A and B to be similar if there is
an invertible matrix P such that P−1AP = B, so a square matrix M is
diagonalizable if and only if it is similar to a diagonal matrix. Theorem 2
tells us that a matrix is diagonalizable if and only if there is another basis
so that the representation of the same transformation in the new basis is
diagonal.

Proposition 1 Fix an n-dimensional vector space X and a basis U = {u1, . . . , un}.
An n × n matrix P is invertible if and only if there is a basis W such that
P = (Mtx)U,W (id); in this case, ((Mtx)U,W (id))−1 = (Mtx)W,U(id).

Proof: Suppose that P is invertible. Let W = {w1, . . . , wn}, where wj =∑n
i=1 pijui. Since P is invertible, rank P = n, so W is a basis. P =

(Mtx)U,W (id).
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Conversely, suppose there is a basis W such that P = (Mtx)U,W (id).
Then wj =

∑n
i=1 pijui. By the Commutative Diagram Theorem (see the

Supplement to Section 3.3),

(Mtx)U,W (id) · (Mtx)W,U(id) = (Mtx)U,U(id ◦ id)
= (Mtx)U(id)

= I

so P is invertible and (Mtx)W,U(id) = ((Mtx)U,W (id))−1.

Theorem 2 Suppose that X is finite-dimensional

• If T ∈ L(X,X), and U,W are any two bases of X, then (Mtx)W (T )
and (Mtx)U(T ) are similar.

• Conversely, given similar matrices A,B with A = P−1BP and any
basis U , there is a basis W and T ∈ L(X,X) such that B = (Mtx)U(T ),
A = (Mtx)W (T ), P = (Mtx)U,W (id), and P−1 = (Mtx)W,U(id).

Proof: For the first bullet, note that

(Mtx)W (T ) = (Mtx)W,U(id) · (Mtx)U(T ) · (Mtx)U,W (id)

by the Commutative Diagram Theorem. By Proposition 1, (Mtx)W,U(id) =
((Mtx)U,W (id))−1, so (Mtx)W (T ) and (Mtx)U(T ) are similar. For the second
bullet, P is invertible, so by Proposition 1, there is a basis W such that
P = (Mtx)U,W (id) and P−1 = (Mtx)W,U(id). Let T ∈ L(X,X) be the linear
transformation such that (Mtx)U(T ) = B. Then

A = P−1BP

= (Mtx)W,U(id) · (Mtx)U(T ) · (Mtx)U,W (id)

= (Mtx)W (id ◦ T ◦ id)
= (Mtx)W (T )

by the Commutative Diagram Theorem.
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2 Eigenvalues and Eigenvectors of a Linear

Transformation

De la Fuente defines eigenvalue and eigenvector for a matrix. Here, we define
an eigenvalue for a linear transformation. For finite-dimensional spaces, we
show that λ is an eigenvalue of T if and only if λ is an eigenvalue for every
matrix representation of T .

Definition 3 LetX be a vector space and T ∈ L(X,X). We say that λ is an
eigenvalue of T and v ̸= 0 is an eigenvector corresponding to λ if T (v) = λv.

Theorem 4 Let X be a finite-dimensional vector space, and U any basis.
Then λ is an eigenvalue of T if and only if λ is an eigenvalue of (Mtx)U(T ).
v is an eigenvector of T corresponding to λ if and only if (crd)U(v) is an
eigenvector of (Mtx)U(T ) corresponding to λ.

Proof: By the Commutative Diagram Theorem,

T (v) = λv ⇔ (crd)U(T (v)) = crdU(λv)

⇔ (Mtx)U(T ) ((crd)U(v)) = λ ((crd)U(v))

Theorem 5 (Theorem 6.7’) Let X be an n-dimensional vector space, T ∈
L(X,X), U any basis of X, and A = (Mtx)U(T ). Then the following are
equivalent:

• A can be diagonalized

• there is a basis W for X consisting of eigenvectors of T

• there is a basis V for Rn consisting of eigenvectors of A.

Proof: Use de la Fuente’s Theorem 6.7 and Theorem 4 above.
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3 Diagonalization of Symmetric Real Matri-

ces

Definition 6 Let

δij =

{
1 if i = j
0 if i ̸= j

A basis V = {v1, . . . , vn} of Rn is orthonormal if vi · vj = δij. In other
words, each basis element has unit length, and distinct basis elements are
perpendicular.

Example 7 The standard basis of Rn is orthonormal.

Definition 8 A real n×nmatrix A is unitary if A⊤ = A−1 (here, A⊤ denotes

the transpose of A:
(
A⊤

)
ij
= Aji).

Theorem 9 A real n× n matrix A is unitary if and only if the columns of
A are orthonormal.

Proof: Let αj denote the jth column of A.

A⊤ = A−1 ⇔ A⊤A = I

⇔ αi · αj = δij

⇔ {α1, . . . , αn} is orthonormal

Remark 10 Let A be unitary and let V be the set of columns of A; let W
be the standard basis of Rn. Since A is unitary, it is invertible, so V is a
basis of Rn and A⊤ = (Mtx)V,W (id), where id is the identity transformation
on Rn. Since V is orthonormal, the transformation between bases W and
V preserves all geometry; the lengths of vectors, and the angles between
vectors, are not changed by changing from one basis to the other.

Theorem 11 Let T ∈ L(Rn,Rn), id the identity transformation in L(Rn,Rn),
and suppose that (Mtx)W (T ), the matrix representation of T with respect to
the standard basis W , is symmetric. Then there is an orthonormal basis
V = {v1, . . . , vn} of Rn consisting of eigenvectors of T , so that

(Mtx)W (T ) = (Mtx)W,V (id) · (Mtx)V (T ) · (Mtx)V,W (id)
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where (Mtx)V T is diagonal and the change of basis matrices (Mtx)V,W (id)
and (Mtx)W,V (id) are unitary.

The proof of the theorem requires a lengthy digression into the linear algebra
of complex vector spaces. Here is a very brief outline. Let M = (Mtx)W (t).
Since M is a real matrix, its characteristic polynomial det ((Mtx)W (T )− λI)
is an nth degree polynomial with real coefficients. Recall that an nth degree
polynomial with coefficients in R or in C always has n roots (not necessarily
distinct) in C.1 The inner product in Cn is defined as follows:

x · y =
n∑

j=1

xi · yj

where c̄ denotes the complex conjugate of any c ∈ C; note that this implies
that x · y = y · x. The usual inner product in Rn is the restriction of this
inner product on Cn to Rn. Given any complex matrix A, define A∗ to be
the matrix whose (i, j)th entry is aji; in other words, A∗ is formed by taking
the complex conjugate of each element of the transpose of A. It is easy to
verify that given x, y ∈ Cn and a complex n× n matrix A, Ax · y = x ·A∗y.
Since M is real and symmetric, M∗ = M . If λ ∈ C is an eigenvalue of M ,
with eigenvector x ∈ Cn, then

λ|x|2 = λ(x · x)
= (λx) · x
= (Mx) · x
= x · (M∗x)

= x · (Mx)

= x · (λx)
= (λx) · x
= λ(x · x)
= λ|x|2

= λ̄|x|2

1Although we do not need it here, you should also recall that if the coefficients of the
polynomial lie in R, the roots occur in conjugate pairs. This fact is important for the
solution of differential equations.
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which proves that λ = λ̄, hence λ ∈ R.
Notice that if M is real (not necessarily symmetric) and λ ∈ R is an

eigenvalue, then det(M−λI) = 0 ⇒ ∃v ∈ Rn s.t. (M−λI)v = 0, so there is
at least one real eigenvalue. The fact that M is real and symmetric implies
that, if an eigenvalue has multiplicity m, one can find m independent real
eigenvectors corresponding to that eigenvalue. Thus, there is a basis of Rn

consisting of eigenvectors, hence M is diagonalizable over R. To see that the
eigenvectors corresponding to distinct eigenvalues are orthogonal, suppose
that Tx = λx and Ty = ρy with ρ ̸= λ. Then

λ(x · y) = (λx) · y
= (Mx) · y
= (Mx)⊤y

=
(
x⊤M⊤

)
y

=
(
x⊤M

)
y

= x⊤(My)

= x⊤(ρy)

= x · (ρy)
= ρ(x · y)

so (λ− ρ)(x · y) = 0; since λ− ρ ̸= 0, we must have x · y = 0.

4 Application to Quadratic Forms

In the remainder of this note, we use Theorem 11 to study quadratic forms.
Consider a quadratic form

f(x1, . . . , xn) =
n∑

i=1

αiix
2
i +

∑
i<j

βijxixj (1)

Let

αij =

{
βij

2
if i < j

βji

2
if i > j

Let A = (αij). Then f(x) = x⊤Ax. Since A is symmetric, Rn has an
orthonormal basis V = {v1, . . . , vn} consisting of eigenvectors of A; let
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λ1, . . . , λn denote the corresponding eigenvalues. Thus, A = U⊤DU where
D is diagonal (with diagonal elements λ1, . . . , λn), and U = (Mtx)V,W (id) is
unitary. The columns of U⊤ (which, of course, are the rows of U) are the
coordinates of v1, . . . , vn, expressed in terms of the standard basis W .

f
(∑

γivi
)

=
(∑

γivi
)⊤

A
(∑

γivi
)

=
(∑

γivi
)⊤

U⊤DU
(∑

γivi
)

=
(
U

∑
γivi

)⊤
D

(
U

∑
γivi

)
=

(∑
γiUvi

)⊤
D

(∑
γiUvi

)

= (γ1, . . . , γn)D


γ1
...
γn


=

∑
λiγ

2
i

This proves the following corollary of Theorem 11.

Corollary 12 Consider the quadratic form (1).

1. f has a global minimum at 0 if and only if λi ≥ 0 for all i; the level
sets of f are ellipsoids with principal axes aligned with the orthonormal
eigenvectors v1, . . . , vn.

2. f has a global maximum at 0 if and only if λi ≤ 0 for all i; the level
sets of f are ellipsoids with principal axes aligned with the orthonormal
eigenvectors v1, . . . , vn.

3. If λi < 0 for some i and λj > 0 for some j, then f has a saddle point
at 0; the level sets of f are hyperboloids with principal axes aligned with
the orthonormal eigenvectors v1, . . . , vn.
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